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A B S T R A C T

Oriented object detection in aerial images has received extensive attention due to its wide range of application
scenarios. Although great success has been achieved, current methods still suffer from inferior high-precision
detection performance. Firstly, the classification scores cannot truly represent the localization accuracy of the
predictions. Secondly, the orientation prediction in these detectors is not accurate enough for high-precision
object detection. In this paper, we propose a Task Interleaving and Orientation Estimation Detector (TIOE-
Det) for high-quality oriented object detection in aerial images. Specifically, a posterior hierarchical alignment
(PHA) label is proposed to optimize the detection pipeline. TIOE-Det adopts PHA label to integrate fine-grained
posterior localization guidance into classification task to address the misalignment between classification and
localization subtasks. Then, a balanced alignment loss is developed to solve the imbalance localization loss
contribution in PHA prediction. Moreover, we propose a progressive orientation estimation (POE) strategy
to approximate the orientation of objects with n-ary codes. On this basis, an angular deviation weighting
strategy is proposed to achieve accurate evaluation of angle deviation in POE strategy. TIOE-Det achieves
significant gains on high-precision detection performance. Extensive experiments on multiple datasets prove
the superiority of our approach. Codes are available at https://github.com/ming71/TIOE.
1. Introduction

Object detection in aerial images has been a hot topic in recent
years. As the available satellite data increased rapidly, efficient detec-
tion of objects of interest in aerial images has become a crucial issue.
Traditional methods usually use handcraft features for object detec-
tion (Li et al., 2012; Zhu et al., 2010), which are both time-consuming
and not accurate enough.

Over the past few years, the development of deep learning has
greatly promoted the progress in generic object detection. The powerful
and efficient feature extraction ability of convolutional neural networks
(CNNs) enable the detector to have both high speed and high accuracy.
A series of advanced detectors have been proposed to achieve high-
performance detection with horizontal bounding box (HBB), such as
Faster R-CNN (Ren et al., 2016) and YOLO series (Redmon et al.,
2016; Redmon and Farhadi, 2017, 2018). These detectors decouple the
object detection task into a category recognition subtask and a position
regression subtask, and then design independent branches to complete
the respective tasks.

Objects in aerial images often have arbitrary orientations. The
horizontal bounding box used in generic object detection cannot locate
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these oriented aerial objects well. Therefore, rotation detectors use
the oriented bounding box (OBB) to represent the ground-truth (GT)
objects in the aerial images (Yang et al., 2021b; Ming et al., 2022a;
Xu et al., 2020). The GT object is denoted as (𝑐𝑥, 𝑐𝑦,𝑤, ℎ, 𝜃) under
the OBB representation, in which (𝑐𝑥, 𝑐𝑦) denotes the center point of
the OBB, (𝑤, ℎ) is the weight and the height of box, 𝜃 represents the
orientation of object. Recently, many advanced rotation detectors have
been proposed to achieve accurate oriented object detection in aerial
images (Ming et al., 2022a; Han et al., 2021; Yang et al., 2021c; Ming
et al., 2022b, 2021a; Yang et al., 2021d; Han et al., 2021). However,
high-precision oriented object detection in aerial images remains a
challenging task. Most of the existing rotation detectors are developed
from the generic object detectors by directly introducing an extra angle
prediction. Therefore, the framework does not adapt to oriented object
detection.

Firstly, rotation detectors usually adopt the unrelated classification
and regression branches to achieve oriented object detection. The inde-
pendent prediction of the two tasks makes them incompatible, which
degrades high-precision detection performance. Specifically, a high
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Fig. 1. Visualization of the ground-truth box (blue), preset anchors (dotted line) and its regression boxes (solid line). The predicted box with higher IoU ( 0.8 > 0.7) gets a lower
classification score ( 0.8 < 0.9), which reveals that the binary classification label cannot distinguish bounding boxes with different localization accuracy. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 2. Illustration of IoU distribution between all detections and GT boxes. The output detections is obtained through NMS from all detections. (a) reveals that many high-quality
detections cannot be effectively output due to the inconsistency between classification and regression, which hurts the high-precision detection performance. (b) achieves significant
high-precision detection performance through task interleaving and consistency learning.
classification score of the predicted box cannot guarantee a good local-
ization result. For example, the two anchors in Fig. 1(a) are regarded
as positive samples, and thus ground-truth (GT) labels for classification
are set to 1. However, their corresponding predictions in Fig. 1(b) show
that the predicted box with better localization accuracy gets lower
predicted classification scores. This high-quality but low-scoring de-
tection would be suppressed in the Non-Maximum Suppression (NMS)
process, leading to the weak correlation between classification score
and localization accuracy.

We further visualized the Intersection-over-Union (IoU) distribution
of detections to confirm the above comments. We trained the rotated
RetinaNet (Lin et al., 2017) on HRSC2016 dataset (Liu et al., 2017), and
then performed inference on testing images and counted the detections
with the predicted classification score higher than 0.5. Before NMS, the
IoU of predictions has a large variance and includes many potential
high-precision detections (see Fig. 2(a)). However, when NMS is per-
formed based on the classification confidence, high-quality detections
are suppressed due to unreliable classification scores.

Secondly, many rotation detectors suffer from inaccurate orienta-
tion regression introduced by angle prediction in OBB. The mainstream
rotation detectors directly regress the angle of OBB, which gives rise
to three issues. Firstly, angle prediction should be paid more attention
for high-precision oriented object detection, but most rotation detectors
often treat different variables equally in regression loss. Secondly, the
boundary of the angle definition leads to a suboptimal angle optimiza-
tion process. As shown in Fig. 3, with the angle defined in [0, 180◦), the
real angular deviation between the anchor box (100, 100, 600, 100, 0◦)
and the GT box (100, 100, 600, 100, 175◦) is quite small, there is only an
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slight angle offset of 5◦. But angular deviation would be calculated as
175◦ due to the boundary of angle definition, which leads to a large
angle loss. As a result, the regression loss may oscillate and leads to a
suboptimal optimization process as shown in the right of Fig. 3. Thirdly,
for the objects with large aspect ratios (such as bridges, ships), a slight
angular deviation will cause the IoU between the predictions and the
GT boxes to drop sharply. The angle loss of these objects should not be
treated the same as that of square-like objects.

To solve the above-mentioned problems, in this paper, we pro-
posed a novel Task Interleaving and Orientation Estimation detector
(TIOE-Det) for high-precision oriented object detection in aerial im-
ages. TIOE-Det discards the binary classification branch and adopts a
task interleaving branch to interweave class recognition task and OBB
regression task under a unified pipeline. Specifically, a posterior hierar-
chical alignment (PHA) label is designed to introduce fine-grained pos-
terior localization guidance into classification task. Next, we propose a
balanced alignment loss (BAL) to solve dominant loss contribution of
negatives in PHA prediction. During the inference stage, localization-
guided NMS is conducted to obtain high-precision detections based on
PHA scores. As shown in Fig. 2(b),TIOE-Det outputs credible detec-
tions with high IoUs and thus achieves better high-precision detection
performance.

To achieve accurate orientation prediction, we propose a progres-
sive orientation estimation (POE) strategy to optimize angle prediction
in TIOE-Det. The POE strategy encodes the GT angle into a discrete
n-ary code via a progressive approximating manner. Continuous an-
gles are transformed into efficient discrete codes within an acceptable
error range. In this way, the suboptimal optimization problem could
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Fig. 3. Oscillation of angle regression loss caused by the inadequate orientation representation. Due to the definition boundary of the angle, it is suboptimal to direct regress the
angles in OBB representation.
be solved. Then, an angular deviation weighting (ADW) strategy is
designed to further optimize the angle loss under POE representation.
The ADW strategy comprehensively considers the aspect ratio, angular
error, and gradient optimization to determine the magnitude of angle
loss for better convergence.

TIOE-Det achieves superior high-precision detection accuracy, and
outperforms many recent advanced rotation detectors. Extensive exper-
iments on multiple aerial image datasets demonstrate the effectiveness
of our method. The codes are available at https://github.com/ming71/
TIOE.

The main contribution of this paper can be summarized as follows:

• A novel TIOE-Det is proposed to achieve high-precision oriented
object detection by bridging the inconsistency between subtasks
and optimizing the orientation prediction.

• We observed that binary classification task lead to misaligned
classification and regression performance. A posterior hierarchi-
cal alignment label is then proposed to use fine-grained poste-
rior localization guidance to optimize the detection pipeline in
rotation detectors.

• We innovatively represent angles as n-ary codes via a progres-
sive orientation estimation (POE) method for high-precision OBB
regression. Meanwhile, the angular deviation weighting strat-
egy is developed to adaptively correct POE deviation to further
performance gains.

2. Related work

2.1. Oriented object detection

Object detection is an important topic in the field of computer
vision. Over the past decade, a series of detectors have been proposed
to detect objects using horizontal bounding box (HBB) (Girshick, 2015;
Ren et al., 2016; Redmon et al., 2016; Redmon and Farhadi, 2017).
Recently, oriented object detection in aerial images has received more
and more attention due to its wide range of application scenarios.
The objects in the aerial images are from a bird’s-eye view with
arbitrary orientations. Therefore, the oriented bounding box (OBB) is
used to represent arbitrary-oriented objects. Many advanced rotation
detectors have been developed to detect oriented objects in the aerial
images (Han et al., 2021; Ming et al., 2021a; Yang et al., 2021c,d, 2019;
Ding et al., 2019). Since there is large variations in angle, scale, and
aspect ratio of the objects in aerial scenes, these methods preset densely
laid anchor boxes for accurate detection, such as SCRDet (Yang et al.,
2019), RRPN (Ma et al., 2018). The dense anchors bring redundant
overhead and lead to imbalance problems. Some methods preset hori-
zontal anchors to alleviate the imbalance issue (Ding et al., 2019; Ming
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et al., 2022a; Han et al., 2021). For example, RoI Transformer (Ding
et al., 2019) transforms a horizontal RoI into a rotated RoI and then
extracts rotation-invariant features for classification and regression.
S2A-Net (Han et al., 2021) generates high-quality oriented anchors
via anchor refinement and adaptively aligns the convolutional features
with the anchors.

Some works focus on feature extraction in oriented object detec-
tion (Ming et al., 2022a; Yang et al., 2021b; Han et al., 2021). For
example, Ming et al. (2022a) suggested that the classification and
regression tasks respond differently to features in oriented object de-
tection. Then, a polarized attention mechanism is proposed to extract
task-sensitive feature maps. R3Det (Yang et al., 2021b) builds aligned
feature maps to accommodate the localization offsets of the refined
bounding boxes.

Optimization of regression loss for oriented object detection is
another hot topic recently. The extra angle prediction in OBB rep-
resentation derives many issues, such as loss oscillation caused by
out-of-bounds angle (Yang and Yan, 2020), ambiguity of OBB rep-
resentations (Ming et al., 2022b). Circular Smooth Label (Yang and
Yan, 2020) tackles the out-of-bounds angles by transforming orienta-
tion regression into a classification task. RIDet (Ming et al., 2022b)
treats ambiguous representations as equivalent local minima to opti-
mize angular error with a representation invariance loss. Yang et al.
(2021d,c) adopted Gaussian Wasserstein distance and Kullback–Leibler
divergence to measure the distance between OBBs, thus avoiding the
problems caused by angle prediction.

2.2. Misaligned classification and regression

The misalignment between classification and regression indicates
that the classification scores of the predictions cannot represent the
localization accuracy of the predictions. This issue has been discussed
in some previous work in horizontal object detection. For example,
some work (Zhu et al., 2021) realigns RoI features to eliminate feature
offsets of RoIs, which helps the NMS procedure to select well localized
bounding boxes. Ming et al. (2021b) suggested that the misalignment
stems from unreasonable training sample selection and designed a
dynamic anchor learning strategy to select high-quality positives.

Some work have tried to directly predict the IoU between the
detections and GT boxes to guide NMS procedure, and thus bridging
the gap between classification and regression (Jiang et al., 2018; Li
et al., 2020b; Zhu et al., 2021). IoU-Net (Jiang et al., 2018) and IoU-
uniform R-CNN (Zhu et al., 2021) use an additional IoU prediction
branch to evaluate the localization accuracy of the detections for
the NMS process. Methods such as VFNet (Zhang et al., 2021a) and

cleanliness scores (Li et al., 2020b) combine IoU with classification
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Fig. 4. Overview of our proposed TIOE-Det. ‘C’ is the total number of categories, ‘A’ denotes the number of anchors laid at each position of the feature map, and ‘B’ is the length
of the POE coding of orientations. ’only train’ means it ony works during the training process, likewise for ‘only test’ and ‘train and test’.
scores to select high-quality detections. There are some methods obtain
credible classification confidence by uncertainty estimation, such as
softer-NMS (He et al., 2018), Gaussian YOLOv3 (Choi et al., 2019).

However, there are still some problems in these methods. Firstly,
most of these works ignore that the binary GT labels of the classification
task are the culprit of the misaligned classification and regression
performance. The binary classification branch is still adopted during
training and inference, and thus the predicted confidence is unreliable.
Secondly, the semantic information of IoU is obscure and hard to
identify. The methods that use IoU prediction branches often design
complex IoU regression structures and training strategies, such as IoU-
Net (Jiang et al., 2018). Even so, IoU prediction is still not accurate
enough, and the network is hard to converge. Thirdly, the extra IoU
prediction branch introduces additional computational overhead and
reduces the inference speed. We will make improvements in these areas
in this paper.

2.3. Angle prediction in rotation detectors

Objects in aerial images are usually arbitrary-oriented. The simple
and effective represent is the oriented bounding box (OBB) denoted as
(𝑐𝑥, 𝑐𝑦,𝑤, ℎ, 𝜃), which is also the mainstream representation in current
rotation detectors (Han et al., 2021; Ming et al., 2021a; Yang et al.,
2021c,d, 2019; Ding et al., 2019; Ming et al., 2022b). The angle
variable introduced in OBB derives many problems.

The boundary of the angle definition leads to a suboptimal an-
gle optimization process, which has been discussed in some previous
work (Yang et al., 2021a; Yang and Yan, 2020; Ming et al., 2022b;
Wu et al., 2020a). To solve the issue, the work (Ming et al., 2022b)
propose a representation invariance loss, which treats redundant OBB
representations as equivalent local minima for consistent optimization.
Llerena, Yang et al. (2021c) transform the OBB into a Gaussian dis-
tribution, and use a covariance matrix to represent the orientation of
the OBB. There are also methods to discretize the angle variable to
optimize angle prediction. For example, Circular Smooth Label (Yang
and Yan, 2020) (CSL) transforms the angle regression into a angle
classification task via Gaussian window function. But the overly heavy
angle classification head brings large computational burden and re-
duces the inference speed. Densely Coded Labels (Yang et al., 2021a)
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(DCL) solves the problem by using Binary code and Gray code for
efficient angle encoding. However, neither CSL nor DCL considers the
impact of different bits in the coding method on IoU variations.

Besides, aerial images often contain a large number of objects with
large aspect ratios, such as bridges, trucks. For these objects, a slight
angular deviation will cause the IoU between the predictions and the
GT boxes to drop sharply, and thus angle prediction should be paid
more attention. Zhang et al. (2021b) proposed a aspect ratio guided
method for more accurate angle regression for long objects. Zhu et al.
(2020) designed a length-independent IoU to increase the tolerance
of long and narrow objects in the label assignment for better angle
performance.

3. Proposed method

The overall framework of our TIOE-Det is shown in Fig. 4. TIOE-Det
uses a fully convolutional network to extract multi-scale features. Then,
three branches are adopted to locate the objects and conduct class
recognition. The HBB regression branch together with POE prediction
branch determine the position of the objects in the images. Next, the
task interleaving branch predicts PHA scores to determine the class
and localization confidence of the predicted boxes. Finally, localization-
guided NMS is performed during inference to select high-precision
detections based on the predicted PHA scores.

3.1. Posterior hierarchical alignment label

Current rotation detectors often use a unified IoU threshold between
GT boxes and preset anchors for training sample selection (also called
label assignment). We suggest that various rotated IoUs between two
OBBs should be treated differently during training. As illustrated in
Fig. 5(a), the predicted box with an IoU of 0.5 has a poor spatial align-
ment with GT box. This detection should not be treated the same as
the one with an IoU of 0.8 in Fig. 5(b). However, current methods treat
them equally as positive samples in classification branch and their class
labels are all set to 1. In this case, the classifier cannot select detections
with accurate localization results based on the classification scores.
Hence it is not conducive to high-quality oriented object detection.
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Fig. 5. Illustration of different IoU cases between GT box (blue) and corresponding
detections (red). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

The most intuitive solution is to introduce the posterior localization
guidance to the classification task, just like the IoU prediction meth-
ods (Jiang et al., 2018; Wu et al., 2020b; Chen et al., 2020; Zhang
et al., 2021a). Although good performance has been achieved by these
methods, there are still many problems, which can be summarized into
the following three folds:

(1) Firstly, the semantic information of IoU is very obscure, and it is
hard to predict IoU accurately. Most IoU prediction work designs
complex network (Wu et al., 2020b) or independent training
strategy (Jiang et al., 2018) to predict IoU, which not only makes
the model more complicated, but also still suffers from the hard
convergence of IoU prediction.

(2) Secondly, it is unnecessary to predict the accurate IoU for low-
quality detections (e.g. samples with IoU < 0.1). The IoU predic-
tion for low-quality samples does not help improve the perfor-
mance, but hinders network convergence.

(3) Moreover, completely accurate IoU prediction for positives is
inefficient and may brings slight performance improvement. For
example, The two detections with IoU of 0.80 and 0.85 are
almost the same spatially (see Figs. 5(b) and 5(c)). However, the
continuous IoU is hard to learning.

Based on the above observations, we propose the posterior hier-
archical alignment (PHA) label as an efficient metric for interleaving
classification and localization tasks. The classification branch is re-
placed with a PHA prediction branch. Then, PHA label assignment is
conducted based on the prior knowledge from both category and local-
ization to select high-quality samples. Finally, the predicted PHA scores
are used for localization-guided NMS for high-precision detections. The
detailed definition of PHA label is introduced as follows.

We denote the IoU between a predicted box and its corresponding
GT box as 𝑜, which also represents posterior spatial alignment of the
outputs. 𝑇𝑝 and 𝑇𝑛 are the IoU thresholds to determine the positives
and negatives, respectively. The posterior IoU interval is divided into 𝑙
intervals:

𝛿 = (1.0 − 𝑇𝑝)∕𝑙. (1)

Next, the PHA label 𝑜∗ is defined as follows:

𝑜∗(𝑜) =
{

(⌊𝑜∕𝛿⌋ + 1) ⋅ 𝛿 if 𝑜 > 𝑇𝑝
0 if 𝑜 < 𝑇𝑛,

(2)

in which ⌊⋅⌋ is the floor function.
PHA label divides posterior IoU of the prediction into fine-grained

quality intervals, which effectively characterize localization accuracy.
Compared with the overly fine posterior IoU prediction, our discrete
but accurate PHA labels are more conducive to network convergence
to achieve better performance. Meanwhile, we set PHA label of low-
quality samples to be 0 in Eq. (2). Since these samples might produce
abnormally high scores during inference stage if no supervision was
imposed.
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Algorithm 1 Localization-Guided NMS
Input:  = {𝑏1, 𝑏2, ..., 𝑏𝑛} is a 𝑁 × 5 matrix of detection boxes.  =
{𝑠1, 𝑠2, ..., 𝑠𝑛} denotes the PHA scores. 𝑁𝑡 is the NMS threshold.
Output:  = {𝑑1, 𝑑2, ..., 𝑑𝑛} is a 𝑁 × 5 matrix of final detections.
 ⇐ {}
while  ≠ ∅ do
𝑚 ⇐ argmax
 ⇐ 𝑏𝑚
 ⇐  ∪ ;  ⇐  −
for 𝑏𝑖 in do
if 𝐼𝑜𝑈 (, 𝑏𝑖) ≥ 𝑁𝑡 then

 ⇐  − 𝑏𝑖 ;  ⇐  − 𝑠𝑖
end if

end for
end while
return ,

Besides, we adopted a curriculum learning based training strategy
to gradually increase the number of PHA levels for a more smooth and
stable training process. The adaptive PHA level is as follows:

𝑙(𝑡) =
⌊

𝑡
𝑙0

⌋

+ 1, (3)

in which 𝑡 = 𝑖𝑡𝑒𝑟𝑠
𝑀𝑎𝑥_𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 , and 𝑀𝑎𝑥_𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 is the total number of

iterations. 𝑙0 is the number of PHA levels that is finally adopted. The
number of levels is gradually increased in different intervals until it
reaches 𝑙0. We use fewer PHA intervals in initial training stage so that
the network can converge more quickly. As the model converges, the
number of levels adaptively increases so that the model can distinguish
IoU in different intervals and then recognize high-quality detections.

In the inference stage, we design a localization-Guided NMS (LG-
NMS) to select high-quality detections with predicted PHA scores. The
category with highest PHA score of a prediction box will be selected as
predicted class. Then the predictions with PHA scores less than preset
threshold are suppressed. Different from traditional NMS procedure
that use classification score for sample selection, LG-NMS adopts the
credible PHA score to ensure high-quality detections. In this way, pre-
dictions with accurate localization results will be selected as the final
detections. Therefore, LG-NMS effectively bridges the inconsistency of
classification and regression. The pseudo-code of LG-NMS can be found
in Algorithm 1.

3.2. Progressive orientation estimation

Accurate angle prediction is quite important for high-precision ori-
ented object detection in aerial images. Angle representation is peri-
odic, which means that many angle representations may represent the
same real orientation. It would hinder the model convergence (Yang
and Yan, 2020). Intuitively, transforming angle regression into an angle
classification task could avoid the problem of redundant representation
of angles. Some previous work (Yang and Yan, 2020; Yang et al.,
2021a) tried to regard the orientation prediction task as an angle
classification task, but still suffer from heavy heads, intolerable errors,
or hard optimization. To optimize the angle classification method,
we propose a heuristic orientation encoding method into TIOE-Det,
which is called progressive orientation estimation (POE). POE is a
heuristic and flexible encoding method. On the one hand, POE has
practical physical meaning and is easy to learn. On the other hand,
we can flexibly adjust the representation of POE according to the angle
prediction accuracy requirements of different detection tasks.

Given the pre-defined angle range 𝑅 = [𝑅0, 𝑅1) (such as R =
[0, 180◦)), we encode object orientation 𝜃 into a discrete 𝑛-ary code 𝛩
that has 𝑁 significant conditions, and 𝑁 ∈ N+. We denote 𝛥𝑅 = 𝑅 −𝑅
1 0
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Fig. 6. Illustration of the flow of POE coding for a given 𝜃 = 70◦ with 𝑁 = 2.
as the length of angle range. Both 𝑅0, 𝑅1, and 𝛥𝑅 are converted to
degrees. The total length of 𝛩 is as follows:

𝑘(𝑅,𝑁) = 𝑚𝑖𝑛{𝑥 ∈ Z|𝑁𝑥 ≥ 𝛥𝑅}. (4)

Note that the 𝑛-ary code can represent digits in [0, 𝑁𝑘), which is beyond
the real angle range 𝛥𝑅. We constrain the representation range into the
given angle range via a angle unit 𝛿:

𝛿 = 𝛥𝑅∕𝑁𝑘. (5)

The target 𝑛-ary code is a tuple denoted as 𝛩 = (𝑒1, 𝑒2,… , 𝑒𝑘), in which:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑒𝑘(𝜃) =
⌊

( 𝜃
𝛿
)∕𝑁𝑘−1

⌋

𝑒𝑖(𝜃) =
⎢

⎢

⎢

⎣

𝜃
𝛿 −

∑𝑘−1
𝑗=𝑖 (𝑒𝑗+1𝑁

𝑗 )

𝑁 𝑖−1

⎥

⎥

⎥

⎦

, 𝑖 ∈ {1, 2,… , (𝑘 − 1)}
. (6)

where ⌊⋅⌋ is the floor function. Eq. (6) recursively divides the total
angle interval and progressively approximates the real orientation of
the bounding box. The 𝑁 significant conditions in 𝑛-ary code divide
the angle interval into 𝑁 equal subintervals, and the angle interval is
determined by the position of the code symbol.

Shown in Fig. 6 is a special case of POE when 𝑁 = 2. In this case,
the GT angle 𝜃 is encoded as a binary code 𝛩 and 𝑘 = 8. We first divide
the entire angle range 𝑅 = [0, 180◦) into two subintervals 𝑅𝑙 = [0, 90◦)
and 𝑅𝑟 = [90◦, 180◦). Since that 𝜃 ∈ 𝑅𝑙, we know 𝑏8 = 0. On this basis,
we further divide the 𝑅𝑙 into 𝑅′

𝑙 = [0, 45◦) and 𝑅′
𝑟 = [45◦, 90◦). Then we

know 𝑏7 = 1 since 𝜃 ∈ 𝑅′
𝑟. Other digits of POE coding are also obtained

by recursively refining the interval and approximating GT orientation.
Although POE is an approximate encoding of continuous angles,

the angular error is tolerable. The angular error of POE is always less
than 1◦ according to the definition in Eqs. (4) and (5). For instance,
in the example in Fig. 6, the angle range [0, 180◦) is encoded into the
binary code. The maximum angular error is the angle unit in Eq. (5),
that is, 𝛿 = 𝑅1

𝑁𝑘 = 180◦
28 ≈ 0.703◦. Such a small angular deviation could

hardly be recognized and would not bring much representation error.
We visualize the change of IoU with aspect ratios and scales under angle
error of 𝑥0.703◦ as shown in Fig. 7(a). The maximum IoU deviation is
only about 0.06, which hardly affects detection performance.

During inference stage, the predicted POE vector 𝛩 is decoded into
the angle representation as follows:

𝜃(𝛩) = 𝑅0 +
𝑘
∑

𝑖=1
(𝑁 𝑖−1𝑒𝑖) (7)

Our method is a heuristic progressive search strategy for orienta-
tion encoding, which is a general form of similar angle classification
methods. For instance, when 𝑁 = 180 in Eq. (4), our POE is simplified
to one-hot angle encoding method (Wu et al., 2020a). When 𝑁 = 2 in
Eq. (4), our encoding is the same as to binary encoding in DCL (Yang
et al., 2021a). POE demonstrates the effectiveness of 𝑛-ary codes from
the perspective of progressive orientation approximation. In this way, it
246
Table 1
Evaluation of different components in PHA prediction.

Cls Pred. IoU Pred. PHA Pred. BAL AP75 AP50∶90

✓ 53.68 52.54
✓ 45.15 49.89

✓ ✓ 57.61 54.29
✓ ✓ ✓ 65.33 56.01

✓ 67.17 56.50
✓ ✓ 71.74 57.28

Table 2
Evaluation of different setting of PHA labels.

Levels 1 3 5 10 100 5a

AP50∶90 52.2 54.1 55.9 53.3 49.8 56.5

aIndicates using curriculum learning strategy.

Table 3
Analysis of different hyperparameters of balanced alignment loss.
𝛽 𝛼

AP75

0.1 0.2 0.5 1.0

2.0 70.4 71.7 71.2 68.3
2.5 70.1 70.9 71.4 68.5
3.0 68.8 68.2 69.5 69.3

gives a general and flexible form of angle classification representation
and an intuitive explanation of its feasibility.

Furthermore, POE is superior to the previous angle classification
methods. The overly heavy classification head leads to slow inference
speed, such as CSL (Yang and Yan, 2020) and MEBOW (Wu et al.,
2020a). On the contrary, the coarse-grained angle encoding cannot
accurately measure the deviation of the angle, such as DCL (Yang et al.,
2021a). Our method is more generalized and flexible, and we can adjust
the significant conditions of POE to make a trade-off between accuracy
and computational overhead. Besides, some existing angle classification
methods deviate from practical meaning and thus they are difficult to
learn, such as angle encoding with Gray code (Yang et al., 2021a). POE
coding is an interpretable method inspired by progressive orientation
approximation, and thus it is easier to converge.

3.3. Loss function

We designed two novel loss functions for the proposed PHA pre-
diction branch and POE strategy to further optimize detection perfor-
mance.

3.3.1. Balanced alignment loss
Most of the predictions in the feature maps are background. These

massive low-quality anchors with very low PHA scores will dominate
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Fig. 7. Visualization of IoU with variation of bounding box area, aspect ratios, and angular errors. Two center-aligned OBBs have the same area. Visualization result in (a) adopts
fixed angular error of 0.703◦ (N = 2 in POE coding), and the IoU deviation is quite small, which ensures that POE strategy does not degrade detection accuracy. The results in

b) show that a slight angular error would lead to a drastic drop in IoU for OBBs with large aspect ratios.
Fig. 8. The correlation between localization accuracy and corresponding confidence, the Pearson correlation coefficients are : (a) 0.08 for baseline model, and (b) 0.37 with our
HA prediction.
Fig. 9. Comparison of high-precision detection performance with different labels.

he training loss, which makes it hard to optimize the PHA predictions
or positives.

To solve the problem, we propose the balanced alignment loss (BAL)
o balance the influence of positives and negatives. For a detection box
ith predicted PHA score �̃�, its deviation from PHA label 𝑜∗ is denoted
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Table 4
Evaluation of different significant conditions in POE coding.

N Reg 2 3 5 8 16

AP50∶90 52.54 54.03 54.21 53.21 54.62 53.76
mAOE 6.81 4.45 4.26 5.82 4.08 5.21

Table 5
Performance evaluation of components in ADW strategy.

POE EOM AOM AP50∶90 mAOE

✓ 52.71 5.73
✓ ✓ 53.35 5.06
✓ ✓ 54.21 4.63
✓ ✓ ✓ 54.62 4.08

Table 6
Analysis of hyperparameter in EOM. 𝑁 = 8 in POE coding.
𝛾 0 0.1 0.3 0.5 0.7 1.0

AP50∶90 52.71 52.83 53.35 48.65 41.35 33.57
mAOE 5.73 5.51 5.06 6.93 7.61 10.36

as 𝛥:

𝛥 = |𝑜∗ − �̃�| (8)

Then, the balanced alignment loss is as follows:

𝐵𝐴𝐿(�̃�, 𝑜∗) = −𝛥𝛼𝑙𝑜𝑔(𝛥) ⋅ [1 − 𝜒(𝑜∗)] − 𝛥𝛽 𝑙𝑜𝑔(𝛥)𝜒(𝑜∗) (9)
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Fig. 10. Curves of (a) different 𝑓 (𝛥𝜃) in AOM function and (b) the corresponding gradient.
Fig. 11. Detection results on HRSC2016 dataset.
Fig. 12. Illustrations of detections on (a)UCAS-AOD dataset and (b) UAV-ROD dataset.

in which 𝜒(⋅) is the indicator function:

𝜒(𝑜∗) =
{

1 if 𝑜∗ > 𝑇𝑝
∗ (10)
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0 if 𝑜 < 𝑇𝑛,

Fig. 13. Illustrations of some detections on DIOR-R dataset.
Table 7
Comparison with other angle classification methods.

Methods Param.(M) 𝛥Param. GFLOPS 𝛥GFLOPS AP50∶90 mAOE

Reg 7.25779 – 16.82426 – 52.54 6.81
OneHot (Rowley et al.,
1998)

7.74055 +6.65% 18.37297 +9.21% 47.12 7.12

GCL (Yang et al.,
2021a)

7.26318 +0.07% 16.84157 +0.11% 50.67 6.95

BCL (Yang et al.,
2021a)

7.26318 +0.07% 16.84157 +0.11% 53.06 5.34

CSL (Yang and Yan,
2020)

7.74055 +6.65% 18.37297 +9.21% 53.98 4.38

POE (ours) 7.27937 +0.29% 16.89348 +0.41% 54.62 4.08
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Fig. 14. Visualization of detections on DOTA dataset.
Fig. 15. Detection results on FAIR1M dataset.

Table 8
Performance evaluation of different AOMs.
𝑓 (𝛥𝜃) 𝑔(𝑟) AP50∶90 mAOE

– – 53.35 5.06
– 𝑙𝑛(𝑟 + 𝑒 − 1) 53.52 4.83
0.5𝛥𝜃2 𝑙𝑛(𝑟 + 𝑒 − 1) 53.69 4.92
1 − cos(0.5𝛥𝜃) 𝑙𝑛(𝑟 + 𝑒 − 1) 53.88 4.75
𝛥𝜃 − sin𝛥𝜃 𝑙𝑛(𝑟 + 𝑒 − 1) 54.21 4.63

𝑇𝑝 and 𝑇𝑛 are the thresholds for training sample division of positives
and negatives, respectively. 𝛼 and 𝛽 are modulation parameters to
control the contribution of training samples with different PHA con-
tribution to the loss. BAL reduces the loss contribution of the simple
background candidates and positives through modulation terms 𝛥𝛼
and 𝛥𝛽 . Meanwhile, by adjusting 𝛼 and 𝛽, we could make a trade-off
between the loss contribution of positives and negatives for balanced
training.

Then, the BAL for PHA prediction during training is defined as
follows:

𝐿PHA(�̃�,𝒐∗) =
1
𝑁

∑

𝑖∈𝜓
𝐵𝐴𝐿(�̃�𝑖,𝒐∗𝑖 ), (11)

in which 𝜓 indicates the total training samples. 𝑜∗ is PHA labels
assigned to a certain class of objects. �̃� represents the class-specific PHA
prediction. Note that �̃� ∈ 𝑹𝑁×𝐶 and �̃� ∈ [0, 1], 𝑁 is the number of total
anchors and 𝐶 denotes the classes. In the inference stage, we will select
the class with the highest IoU predicted by each anchor and use it as
the class prediction result and confidence.

3.3.2. Iou loss
We decouple the OBB prediction into HBB prediction and POE

coding prediction in TIOE-Det (see Fig. 4). The corresponding loss
functions are described below.
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The scales of objects in aerial images varies greatly. IoU is scale in-
variant when measuring the spatial gap between two HBBs. Therefore,
we use IoU loss for HBB regression in TIOE-Det. For each object 𝑔, its
OBB representation is 𝒃∗𝑖 = (𝑐𝑥∗, 𝑐𝑦∗, 𝑤∗, ℎ∗, 𝜃∗), in which (𝑐𝑥∗, 𝑐𝑦∗) is
center coordinate of OBB, (𝑤∗, ℎ∗, 𝜃∗) denote width, height, and angle
of the box, respectively. Its corresponding prediction is denoted as
𝒃𝑖 = (𝑐𝑥, 𝑐𝑦,𝑤, ℎ, 𝜃). Then, the IoU loss for HBB is as follows:

𝐿IoU(𝒃, 𝒃∗) =
1
𝑁𝑝

∑

𝑖∈𝜓𝑝

[

1 − 𝑜(𝒃∗𝑖 , 𝒃𝑖)|𝜃∗=𝜃=0
]

(12)

where 𝑁𝑝 indicates the number of positive anchors 𝜓𝑝. 𝒃 ∈ 𝑹𝑁×5 is
total anchors, and 𝒃∗ ∈ 𝑹𝑁×5 denotes the corresponding GT box. 𝑜(⋅)
calculates the IoU between two boxes.

3.3.3. Angular distance weighting
Another major problem is the angular error measurement in POE

coding. Previous classification-based rotation detectors suffer from two
issues. Firstly, these method usually treat the impact of different bits
equally in angle coding (Yang et al., 2021a; Yang and Yan, 2020;
Wu et al., 2020a), and therefore they produce the same gradients for
different angular errors. We suggest that high bits in the POE coding
have a greater impact on the angular error. For example, if the model
outputs 𝑏7 = 1 in Fig. 6, the predicted angle is far away from the correct
orientation, while the influence of incorrect 𝑏1 does not hurt so much.
Secondly, these methods still suffer from misalignment between angle
loss and detection performance. For example, if the angle range [0, 180◦)
is transformed into 180 angle classes, the cross entropy loss between
46◦ and 45◦ degrees is the same as that between 1◦ and 45◦. They all
have only two different digits in the encoded labels and lead to same
angle loss, which is obviously unreasonable.

We proposed an angular distance weighting (ADW) strategy to
optimize the angle classification loss and address the above issues. The
ADW consists of two parts: angular offset metric (AOM) and encoding
offset metric (EOM). The AOM measures the importance of angular
error for accurate localization, while EOM evaluates the importance
of different bits within POE coding. Specifically, AOM is defined as
follows:

𝐴𝑂𝑀(𝛥𝜃, 𝑟) = (𝛥𝜃 − sin𝛥𝜃)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

𝑓 (𝛥𝜃)

⋅ 𝑙𝑛(𝑟 + 𝑒 − 1)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝑔(𝑟)

, (13)

where 𝛥𝜃 denotes the angular error between the orientation of GT box
𝜃∗ and that of predicted box 𝜃. 𝑟 is aspect ratio of GT box. 𝑓 (𝛥𝜃) and
𝑔(𝑟) are functions of 𝛥𝜃 and 𝑟 respectively, and we will introduce them
later.
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Table 9
Comparisons with other methods on HRSC2016 dataset.
Methods Type Size mAP

RRPN (Ma et al., 2018) two-stage 800 × 800 79.08
R2PN (Zhang et al., 2018) two-stage – 79.60
RetinaNet (Lin et al., 2017) one-stage 416 × 416 80.81
RRD (Liao et al., 2018) one-stage 384 × 384 84.30
RoI Trans. Ding et al. (2019) two-stage 512 × 800 86.20
RSDet (Qian et al., 2021) one-stage 800 × 800 86.50
Gliding Vertex (Xu et al., 2020) two-stage 512 × 800 88.20
OPLD (Song et al., 2020) two-stage 1024 × 1333 88.44
DAL (Ming et al., 2021b) one-stage 416 × 416 88.95
R3Det (Yang et al., 2021b) one-stage 800 × 800 89.26
DCL (Yang et al., 2021a) one-stage 800 × 800 89.46
RIDet (Ming et al., 2022b) one-stage 800 × 800 89.63
CFC-Net (Ming et al., 2022a) one-stage 800 × 800 89.70
GWD (Yang et al., 2021c) one-stage 800 × 800 89.85
AProNet (Zheng et al., 2021) two-stage 512 × 800 90.03
TIOE-Det (Ours) one-stage 800 × 800 90.16
Table 10
Comparisons with different methods on UCAS-AOD dataset.
Methods Size Car Airplane mAP

YOLOv3 (Redmon and Farhadi, 2018) 800 74.63 89.52 82.08
RetinaNet (Lin et al., 2017) 800 84.64 90.51 87.57
FR-O (Xia et al., 2018) 800 86.87 89.86 88.36
RoI Transformer (Ding et al., 2019) 800 87.99 89.90 88.95
RIDet (Ming et al., 2022b) 800 88.50 89.96 89.23
SLA (Ming et al., 2021a) 800 88.57 90.30 89.44
TIOE-Det(ours) 800 88.83 90.15 89.49
S
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Table 11
Comparisons with different methods on UAV-ROD dataset.

Methods AP AP75 AP50

RetinaNet (Lin et al.,
2017)

71.46 85.88 97.68

Faster R-CNN (Ren
et al., 2016)

75.79 86.38 98.07

TS4Net (Zhou et al.,
2022)

76.75 88.17 98.10

TIOE-Det(ours) 77.93 89.64 97.89

Next, AOM is weighted to angle loss together with an EOM as
ollows:

ANG(𝒆, 𝒆∗) = 𝐴𝑂𝑀(𝛥𝜃, 𝑟) ⋅
𝑘
∑

𝑖=1
(𝑁 𝑖−1)𝛾

⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝐸𝑂𝑀

⋅𝐹𝐿(𝑒𝑖, 𝑒∗𝑖 ), (14)

n which 𝒆 and 𝒆∗ denotes POE coding of a prediction and its GT
abel. 𝐹𝐿(⋅) is focal loss (Lin et al., 2017) for angle classification. 𝛾
s hyperparameter to adjust the contribution of different bits in POE
oding to total loss. (𝑁 𝑖−1)𝛾 is the EOM to distinguish different position
f POE labels. The accurate prediction of higher significant bits is more
mportant that of lower bits, therefore, EOM weighting is larger for high
its.

Next, the AOM in Eq. (13) is to determine the magnitude of angle
oss. A good AOM should satisfy following properties:

roperty 1. 𝑔(𝑟) is monotonically increasing w.r.t. the aspect ratio 𝑟. For
objects with large aspect ratios, slight angular deviation would lead to a
sharp drop in detection accuracy (see Fig. 7(b)) and thus require additional
attention.

Property 2. 𝑓 (𝛥𝜃) is monotonically increasing w.r.t the angular deviation.
That is, a small angle loss should guarantee a small angular error, so that
the model converges correctly.

Property 3. The gradient of 𝑓 (𝛥𝜃) w.r.t. angular error is a monotonically
ncreasing function. When the angular error is large, a large gradient is
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expected for fast convergence. Conversely, a small gradient is required to
achieve accurate prediction as angular error is small.

On the basis of above considerations, the AOM is designed as show
in Eq. (13). In Eq. (13), 𝑟 ∈ [1,+∞]. 𝛥𝜃 is the angular error, and
𝛥𝜃 ∈ [0, 𝜋). 𝑔(𝑟) = 𝑙𝑛(𝑟+ 𝑒−1) = 1 when 𝑟 = 1 for square-like objects. As
𝑟 ↑, 𝑔(𝑟) ↑, 𝑢 ↑, and 𝐿ANG ↑, therefore the Property 1 holds. When 𝛥𝜃 ↓,
𝑓 (𝛥𝜃) = (𝛥𝜃 − sin𝛥𝜃) ↓, 𝐿ANG ↓, and thus the Property 2 is established.
ince 𝑓 ′(𝛥𝜃) = 𝛥𝜃 −cos(𝛥𝜃), when 𝛥𝜃 ↓, 𝑓 ′(𝛥𝜃), ↓, the Property 3 is also
atisfied. Therefore, 𝐴𝑂𝑀(⋅) in Eq. (13) is a good candidate to evaluate
ngular deviation.

The above two modules in ADW strategy bridge the inconsistency
etween the angle loss and real angle deviation, and help to achieve
ast angular convergence and accurate prediction.

The overall loss of our TIOE-Det combines the above parts, which
s denoted as follows:

= 𝜆1 ⋅ 𝐿PHA + 𝜆2 ⋅ 𝐿IoU + 𝜆3 ⋅ 𝐿ANG, (15)

here 𝐿PHA, 𝐿IoU, 𝐿ANG are the PHA prediction loss, HBB prediction
oss, and angle loss, respectively. These loss items are balanced via
arameters 𝜆1, 𝜆2, 𝜆3, (𝜆1 = 𝜆2 = 𝜆3=1 in our experiments).

4. Experimental setup

4.1. Datasets

Extensive experiments are conducted on multiple publicly available
aerial image datasets, including DOTA (Xia et al., 2018), FAIR1M (Sun
et al., 2022), DIOR-R (Li et al., 2020a), HRSC2016 (Liu et al., 2017),
UCAS-AOD (Zhu et al., 2015), UAV-ROD (Zhou et al., 2022).

DOTA (Xia et al., 2018) is a large-scale aerial and satellite imagery
datasets with oriented bounding box annotations. It contains 2806
aerial images with 188282 annotated instances. There are 15 categories
including plane (PL), baseball diamond (BD), bridge (BR), ground
track field (GTF), small vehicle (SV), large vehicle (LV), ship (SH),
tennis court (TC), basketball court (BC), storage tank (ST), soccer ball
field (SBF), roundabout (RA), harbor (HA), swimming pool (SP), and
helicopter (HC). The original size of images in the dataset ranges from

about 800 × 800 to about 4,000 × 4,000 pixels.
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Table 12
Comparison with other models on DIOR dataset.

Methods APL APO BF BC BR CH ESA ETS DAM GF GTF HA OP SH STA STO TC TS VE WM mAP

RetinaNet (Lin et al., 2017) 61.49 28.52 73.57 81.17 23.98 72.54 58.20 72.39 19.94 69.25 79.54 32.14 44.87 77.71 67.57 61.09 81.46 47.33 38.01 60.24 57.55
IoU loss (Yu et al., 2016) 62.73 22.62 75.96 81.40 24.30 72.68 75.70 59.11 21.63 77.02 79.34 37.33 38.79 69.96 72.53 59.06 81.46 46.57 37.54 62.54 57.91
DAL (Ming et al., 2021b) 62.70 25.42 71.77 80.92 34.88 72.63 69.07 60.52 22.15 68.23 76.71 39.81 48.66 80.91 72.83 62.19 81.27 48.67 42.60 62.77 59.24
Faster RCNN (Ren et al., 2016) 62.79 26.80 71.72 80.91 34.20 72.57 65.75 66.45 18.95 66.63 79.24 34.95 48.79 81.14 64.34 71.21 81.44 47.31 50.46 65.21 59.54
Gliding Vertex (Xu et al., 2020) 65.35 28.87 74.96 81.33 33.88 74.31 64.70 70.72 19.58 72.30 78.68 37.22 49.64 80.22 69.26 61.13 81.49 44.76 47.71 65.04 60.06
RIDet (Ming et al., 2022b) 62.90 32.43 77.58 81.09 37.27 72.58 76.17 64.95 24.42 55.22 81.12 43.61 50.88 81.05 73.16 60.45 81.49 49.02 43.35 62.48 60.56
CFC-Net (Ming et al., 2022a) 64.94 33.43 75.16 81.25 36.14 71.75 70.13 63.57 18.01 68.15 80.82 41.58 52.30 80.95 68.72 69.61 83.73 47.06 47.91 57.86 60.65
TIOE-Det 68.65 28.62 76.68 84.76 39.32 72.35 72.66 63.87 20.36 75.19 77.41 40.63 47.48 82.61 72.58 70.33 81.93 47.86 52.06 64.24 61.98
b
D
c
o
t

FAIR1M (Sun et al., 2022) is a recent benchmark dataset for fine-
rained object recognition in aerial imagery with more than 1 million
nstances and more than 15,000 images. All objects in the dataset
re annotated to 37 categories by oriented bounding boxes, including
oeing 737, Boeing 777, Boeing 747, Boeing 787, Airbus A320, Airbus
220, Airbus A330, Airbus A350, COMAC C919, COMAC ARJ21, other-
irplane, passenger ship, motorboat, fishing boat, tugboat, engineering
hip, liquid cargo ship, dry cargo ship, warship, other-ship, small
ar, bus, cargo truck, dump truck, van, trailer, tractor, truck tractor,
xcavator, other-vehicle, baseball field, basketball court, football field,
ennis court, roundabout, intersection, and bridge. The image width in
AIR1M ranges from 1000 to 10,000 pixels.

DIOR-R (Li et al., 2020a) is a large benchmark for object detection
n remote sensing images, which contains 23,463 images and 192,518
nstances. There are total 20 classes, including airplane (APL), airport
APO), baseball field (BF), basketball court (BC), bridge (BR), chimney
CH), expressway service area (ESA), expressway toll station (ETS),
am (DAM), golf field (GF), ground track field (GTF), harbor (HA),
verpass (OP), ship (SH), stadium (STA), storage tank (STO), tennis
ourt (TC), train station (TS), vehicle (VE) and windmill (WM). The
ize of images in the dataset is 800 × 800 pixels.

HRSC2016 dataset (Liu et al., 2017) collects 1061 images from
oogle Earth for high resolution remote sensing ship detection.
RSC2016 contains lots of ships with large aspect ratios. The image

ize range from 300 × 300 to 1500 × 900. The total dataset is divided
into training set, validation set, and test set, including 436, 181, and
444 images, respectively.

UCAS-AOD (Zhu et al., 2015) is an aerial plane and car detection
dataset. It contains 1510 images, including 1000 images for planes and
510 images for cars. UAV-ROD (Zhou et al., 2022) is an aerial car
dataset which contains 1150 images in the training set and 427 images
in the test set.

4.2. Experimental setting

All images are resized to 800 × 800 or 1024 × 1024 for training and
esting in our experiments. Note that images in DOTA and FAIR1M are
oo large to be fed into the model directly, we crop images into patches
f 1024 × 1024 with a stride of 512. We use the Adam optimizer for
raining, and the initial learning rate is set to 5 × 10−4. The models are
rained on RTX 3090 GPUs with batch size set to 8. The total training
terations are 600 epochs for HRSC2016, UCAS-AOD, and UAV-ROD.
or large-scale remote sensing dataset DOTA, DIOR-R, and FAIR1M,
odels are trained for 300 epochs. Ablation studies are conducted on
RSC2016 which contains lots of ships with large aspect ratios. We use
andom flip, rotation, and scaling for data augmentation.

We use the Average Precision (AP) and mean Average Precision
mAP) to evaluate the detection performance. Specifically, AP50∶90

means average precision over different IoU thresholds, from 0.5 to 0.9,
step 0.1. AP50∶90 considers high IoU thresholds so it helps to measure
high-precision detection performance. We employ the mean Average
Orientation Error (mAOE◦) to evaluate angular errors for orientation
prediction.
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5. Experimental results

5.1. Ablation study

5.1.1. Evaluation of PHA prediction
Component-wise ablations of PHA. The component-wise experiments
of PHA prediction are shown in Table 1. ‘‘Cls Pred’’. denote using
classification branch, ‘‘IoU Pred’’. means adopting IoU branch, and
‘‘PHA Pred’’. means using PHA prediction branch. The baseline model
with classification branch reaches the AP50 of 86.09%, AP75 of 53.68%,
and AP50∶90 of 52.54%.

The variant that directly use IoU branch to replace classification
branch leads to sharp performance drops of high-precision detection,
AP75 drops by 8.53% and AP50∶90 by 2.65%. It shows that the only pre-
diction of IoU could not work well. Then, combination of classification
and IoU regression brings 3.93 points improvement on AP75 and 1.75
points on AP50∶90 compared with the baseline. We suggest that though
binary classification is not accurate enough, it is more stable and easy
to converge compared with direct IoU prediction. On this basis, when
the PHA labels is adopted, the AP75 is improved by further 11.65%
and AP50∶90 by 3.47%. Furthermore, after removing the classification
branch, the model achieves a gain of 13.49 points on AP75 and 3.96
points on AP50∶90. The improvements confirms that binary classification
labels harm the high-precision detection performance. Finally, balanced
alignment loss alleviates the imbalance problem in PHA prediction,
avoiding too many negative samples to dominate the PHA loss, so the
performance is further improved to reach the AP75 of 71.74% and
AP50∶90 of 57.28%. In total, our methods improves the AP75 and AP50∶90
of baseline by 18.06% and 4.74%, respectively.

We visualized the correlation between output confidence scores and
regression accuracy of detections in Fig. 8. Illustrated in Fig. 8(a), there
is a weak correlation between classification score and IoU of detections
of baseline. The Pearson correlation coefficient is just 0.08. Our method
makes the confidence better represent localization accuracy, thereby
reaching a Pearson correlation coefficient of 0.37 in Fig. 8(b). PHA
score helps to achieve more reliable NMS procedure for high-precision
detection.

Different PHA levels. We conducted experiments on the PHA label
assign strategy to find optimal setting s. The experimental results are
shown in Table 2. When the number of PHA levels is equal to 1, the IoU
labels are binary just like the classification task, and it reached AP50∶90
of 52.2%. Whereas the variant with 5 levels achieves AP50∶90 of 55.9%,
which is the best performance reported among all the levels. It shows
that the fine-grained IoU intervals help to represent the localization
accuracy of detections. As the number of total levels is increased to 100,
the IoU interval is 0.05, which is similar to the continuous IoU predic-
tion. As a result, AP50∶90 dramatically drops to 49.8%, and it is close to
the only IoU prediction method (49.89% in Table 1). It further proves
that it is hard to predict continuous IoU directly, and fine-grained PHA
labels works better. Finally, the curriculum learning strategy achieves
smooth model convergence, which improves performance to 56.5%.

As illustrated in Fig. 9, when 𝑙 = 2, binary label in classification
ranch helps the model converge fast compared with IoU prediction.
irect prediction of continuous IoU hinders model convergence and
annot improve high-precision detection performance in early stages
f training. PHA label provides accurate posterior localization informa-
ion and improves network convergence, therefore achieves fast model

onvergence and accurate detections.
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Table 13
Performance comparison with state-of-the-arts on the DOTA dataset. The items with red and blue colors indicate the best and second-best results of each column, respectively.
‘Ms’ means using multi-scale training and testing.

Methods Ms PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

FR-O (Xia et al., 2018) 79.09 69.12 17.17 63.49 34.20 37.16 36.20 89.19 69.60 58.96 49.40 52.52 46.69 44.80 46.30 52.93
ICN (Azimi et al., 2018) ✓ 81.40 74.30 47.70 70.30 64.90 67.80 70.00 90.80 79.10 78.20 53.60 62.90 67.00 64.20 50.20 68.20
RoI Trans. Ding et al.
(2019)

✓ 88.64 78.52 43.44 75.92 68.81 73.68 83.59 90.74 77.27 81.46 58.39 53.54 62.83 58.93 47.67 69.56

CAD-Net (Zhang et al.,
2019)

✓ 87.80 82.40 49.40 73.50 71.10 63.50 76.70 90.90 79.20 73.30 48.40 60.90 62.00 67.00 62.20 69.90

SCRDet (Yang et al., 2019) ✓ 89.98 80.65 52.09 68.36 68.36 60.32 72.41 90.85 87.94 86.86 65.02 66.68 66.25 68.24 65.21 72.61
Gliding Vertex (Xu et al.,
2020)

89.64 85.00 52.26 77.34 73.01 73.14 86.82 90.74 79.02 86.81 59.55 70.91 72.94 70.86 57.32 75.02

Mask OBB (Wang et al.,
2019)

✓ 89.56 85.95 54.21 72.90 76.52 74.16 85.63 89.85 83.81 86.48 54.89 69.64 73.94 69.06 63.32 75.33

CenterMap-Net (Wang et al.,
2020)

✓ 89.83 84.41 54.60 70.25 77.66 78.32 87.19 90.66 84.89 85.27 56.46 69.23 74.13 71.56 66.06 76.03

CSL (Yang and Yan, 2020) ✓ 90.25 85.53 54.64 75.31 70.44 73.51 77.62 90.84 86.15 86.69 69.60 68.04 73.83 71.10 68.93 76.17
OPLD (Song et al., 2020) ✓ 89.37 85.82 54.10 79.58 75.00 75.13 86.92 90.88 86.42 86.62 62.46 68.41 73.98 68.11 63.69 76.43

Tw
o

st
ag

e

AProNet (Zheng et al.,
2021)

✓ 88.77 84.95 55.27 78.40 76.65 78.54 88.45 90.83 86.56 87.01 65.62 70.29 75.43 78.17 67.28 78.16

PIoU (Chen et al., 2020) 80.90 69.70 24.10 60.20 38.30 64.40 64.80 90.90 77.20 70.40 46.50 37.10 57.10 61.90 64.00 60.50
CFC-Net (Ming et al.,
2022a)

✓ 89.08 80.41 52.41 70.02 76.28 78.11 87.21 90.89 84.47 85.64 60.51 61.52 67.82 68.02 50.09 73.50

R3Det (Yang et al., 2021b) ✓ 89.80 83.77 48.11 66.77 78.76 83.27 87.84 90.82 85.38 85.51 65.67 62.68 67.53 78.56 72.62 76.47
DAL (Ming et al., 2021b) 89.69 83.11 55.03 71.00 78.30 81.90 88.46 90.89 84.97 87.46 64.41 65.65 76.86 72.09 64.35 76.95
SLA (Ming et al., 2021a) ✓ 88.33 84.67 48.78 73.34 77.47 77.82 86.53 90.72 86.98 86.43 58.86 68.27 74.10 73.09 69.30 76.36
DCL (Yang et al., 2021a) ✓ 89.26 83.60 53.54 72.76 79.04 82.56 87.31 90.67 86.59 86.98 67.49 66.88 73.29 70.56 69.99 77.37
GWD (Yang et al., 2021c) ✓ 89.06 84.32 55.33 77.53 76.95 70.28 83.95 89.75 84.51 86.06 73.47 67.77 72.60 75.76 74.17 77.43
RIDet (Ming et al., 2022b) ✓ 89.31 80.77 54.07 76.38 79.81 81.99 89.13 90.72 83.58 87.22 64.42 67.56 78.08 79.17 62.07 77.62
RDD ✓ 89.15 83.92 52.51 73.06 77.81 79.00 87.08 90.62 86.72 87.15 63.96 70.29 76.98 75.79 72.15 77.75
KLD (Yang et al., 2021d) ✓ 88.91 85.23 53.64 81.23 78.20 76.99 84.58 89.50 86.84 86.38 71.69 68.06 75.95 72.23 75.42 78.32

O
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ag

e

TIOE-Det(ours) ✓ 89.76 85.23 56.32 76.17 80.17 85.58 88.41 90.81 85.93 87.27 68.32 70.32 68.93 78.33 68.87 78.69
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Hyperparameters in BAL. We further conducted experiments to find the
optimal hyperparameters for balanced alignment loss (see Table 3).
We found that the best performance would be obtained when 𝛼 =
0.2 and 𝛽 = 2. Hyperparameter sensitivity experiments show that
balanced alignment loss reports good performance improvements in
many parameters. Obviously it is robust to different parameters within
a reasonable range, and thus hyperparameters tuning for balanced
alignment loss is not troublesome.

5.1.2. Evaluation of POE strategy
Different significant conditions. The experimental results in Table 4
show that different significant conditions 𝑁 lead to different per-
formances in POE coding. The baseline model adopts direct angle
regression for oriented bounding box prediction. POE coding under
different 𝑁 all get better performance compared with baseline, which
proves the superiority of our method. When 𝑁 = 8, POE strategy
improves AP50∶90 by 2.08 points and reduces mAOE by 2.73◦. Note that
the maximum angular error 𝛿 ≈ 0.352◦ when 𝑁 = 8, while 𝛿 ≈ 0.288◦

when 𝑁 = 5. However, detection performance is even dropped with the
smaller theoretical angular error. We suggest that a smaller theoretical
angular error means more angle intervals are divided, which makes it
hard for the angle classification head to accurately discriminate the tiny
angular error. Hence, there is a trade-off between detection accuracy
and model convergence.

Component-wise ablations in ADW strategy. We conduct experiments to
evaluate the performance of angular distance weighting (ADW) strategy
for training. The ADW strategy consists of two parts, angular offset
metric (AOM) measures the angular error of predicted POE coding, and
encoding offset metric (EOM) distinguishes different bits within POE
coding. The experimental results are shown in the Table 5. Both EOM
and AOM improve high-precision detection performance and reduce
angular error of predictions. Specifically, EOM pays more attention
to the high bits in POE encoding, thus making the training process
more stable. AOM introduces constraints of angular error, gradient of
angular offsets, and aspect ratios into angle classification loss, which
helps to achieve faster convergence and accurate detections. Finally,
ADW strategy improves AP50∶90 by 1.91% and reduces the mAOE by
1.65◦ in total.
252
Hyperparameters in EOM. In Eq. (14), 𝛾 is introduced into EOM to
control the loss contribution of different bits in POE coding. Further,
we conduct experiments to find the optimal hyperparameter 𝛾. We set
𝑁 = 8 in POE coding for fair comparison. As shown in Table 6, when
𝛾 = 0.3, TIOE-Det achieves AP50∶90 of 53.35% and mAOE of 5.06◦,
which is the best performance among the parameters compared. When
𝛾 = 0, EOM, like many current angle classification methods (Yang and
Yan, 2020; Yang et al., 2021a), treats every bit in the POE encoding
equally. In this way, the wrong prediction of high bits would lead
to serious misjudgment of object orientation, thus achieving inferior
performance. As 𝛾 increases, high bits in POE coding are gradually paid
more attention. However, an excessively large 𝛾 would cause the loss
contribution of high bits to dominate the angle loss. For example, when
𝛾 = 1, EOM weighting to different bits of 8-ary POE coding is {83, 82, 1},
which would cause the lower bits to be almost ignored. As a result, it
in turn leads to sharp angular errors and inferior accuracy.

Comparison with related methods. We compare the proposed POE strat-
egy with other angle classification methods, and the results are shown
in Table 7. ‘Reg’ is the baseline model that adopts angle regression
to predict orientation of objects. It achieves AP50∶90 and mAOE of
2.54% and 6.81◦, respectively. ‘OneHot’ (Rowley et al., 1998) method
ivides angle range into 180 significant conditions equally, and adopts
ne-hot labels to represent the orientation. We suggest that too many
ngle classes make classification branch hard to converge, therefore
t achieves inferior performance compared with baseline. CSL (Yang
nd Yan, 2020) introduces error tolerance for adjacent angle classes
nto one-hot labels, which improve AP50∶90 by 1.44% and mAOE by
.43◦. However, these two methods introduce a heavy classification
ead, resulting in a sharp increase in parameters and computational
omplexity of the model. Recent BCL and GCL (Yang et al., 2021a)
se larger interval division to reduce computational cost, but their
etection performance is inferior to CSL. Our POE strategy achieves
ignificant performance gains by introducing a small computational
ost. It achieves AP50∶90 of 54.62% and mAOE of 4.08◦, which is the
est among the compared methods.

valuation of different AOMs. We compare the performance of different
OM candidates, and the experimental results are shown in Table 8.
he AOM consists of 𝑓 (𝛥𝜃) and 𝑔(𝑟), which introduce angular error
nd aspect ratio information into angle loss, respectively. 𝑔(𝑟) improves
he loss contribution of large aspect ratio objects, and thus increases
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Table 14
Comparison with some recent models on FAIR1M dataset. The items with red and blue colors indicate the best and second-best results of each column, respectively.

Method FCOS
(Tian et al.,
2019)

RetinaNet
(Lin et al.,
2017)

DAL
(Ming et al.,
2021b)

RIDet
(Ming et al.,
2022b)

Faster RCNN
(Ren et al.,
2016)

CFC-Net
(Ming et al.,
2022a)

Gliding Vertex
(Xu et al.,
2020)

RoI Trans.
(Ding et al.,
2019)

TIOE-Det TIOE-Deta

mAP 23.70 27.67 29.00 31.58 33.70 34.31 35.86 38.27 35.16 43.87

Boeing 737 10.34 35.01 32.53 28.25 36.05 30.89 36.32 35.84 37.62 41.65
Boeing 747 43.54 83.72 74.39 80.62 85.19 83.87 82.61 82.74 86.71 85.39
Boeing 777 5.96 12.64 13.14 12.92 12.45 10.72 11.29 12.81 11.06 17.53
Boeing 787 13.67 36.68 39.91 45.28 45.35 38.60 48.69 43.90 46.32 48.53
C919 0.00 1.44 2.11 0.15 15.45 5.67 24.48 15.77 0.00 24.32
A220 11.71 45.44 41.32 39.89 49.50 42.44 50.01 48.68 48.75 45.92
A321 3.95 64.95 58.38 53.69 63.16 50.68 65.27 67.35 68.49 70.21
A330 15.03 58.52 44.59 62.80 65.89 55.13 69.98 65.56 72.51 63.09
A350 14.20 71.45 54.88 55.27 62.69 59.20 65.18 62.92 78.19 77.21
ARJ21 13.75 3.60 1.57 8.53 31.25 5.30 33.24 33.60 8.62 45.32
passenger ship 10.65 3.83 9.90 6.11 6.24 7.19 8.92 15.20 3.73 12.96
motorboat 46.21 22.03 53.04 55.20 44.37 63.38 52.04 58.04 58.45 65.39
fishing boat 9.59 2.12 5.71 5.49 3.71 8.72 5.11 9.37 5.12 10.29
tugboat 19.81 13.34 21.08 30.15 26.05 19.70 28.49 30.17 30.51 29.85
engineering ship 13.24 9.11 7.11 5.84 6.88 7.67 9.73 10.87 10.38 11.21
liquid cargo ship 12.92 4.37 12.05 17.21 9.50 21.23 15.67 19.28 5.56 24.00
dry cargo ship 35.08 14.49 28.41 29.58 17.78 30.54 26.75 33.02 18.71 36.01
warship 20.75 3.81 11.91 14.47 6.37 23.21 13.67 24.90 2.52 32.35
small car 42.56 41.91 48.05 52.73 51.44 62.43 49.53 57.73 65.89 74.86
bus 15.55 5.55 7.71 15.27 21.00 34.50 22.04 31.23 4.73 53.31
cargo truck 31.72 20.69 25.04 30.32 32.89 41.15 36.69 42.46 36.29 49.93
dump truck 23.90 16.54 22.82 29.50 40.04 42.18 39.52 45.26 41.31 55.78
van 34.59 34.09 43.26 45.01 45.96 51.65 43.65 54.49 65.89 75.08
trailer 12.14 0.33 2.48 3.82 7.82 11.41 11.65 15.54 0.53 19.62
tractor 1.07 0.36 1.03 0.05 3.77 1.69 2.90 3.55 0.18 4.00
excavator 7.90 0.52 5.06 5.03 9.28 10.26 12.49 12.78 9.83 16.62
truck tractor 1.09 0.01 0.55 0.53 1.71 0.71 3.66 2.59 0.10 2.18
basketball court 23.09 22.28 38.76 37.47 39.92 40.21 39.85 42.87 50.23 50.90
tennis court 74.76 78.62 75.37 77.78 76.97 79.41 76.98 78.40 80.23 83.97
football field 49.64 59.46 46.10 52.69 52.36 58.01 50.79 59.30 60.70 65.29
baseball field 82.90 86.46 84.66 85.63 87.56 84.34 86.85 86.60 88.57 85.96
intersection 55.14 57.33 44.06 51.41 57.11 51.98 58.59 58.18 65.07 63.36
roundabout 26.46 20.30 13.96 17.05 22.28 18.22 20.49 19.34 21.02 21.50
bridge 22.79 9.89 15.08 17.96 7.75 14.31 16.21 20.76 11.94 28.01

aDenotes using multi-scale training and testing.
AP50∶90 by 0.17%, and improves mAOE by 0.23◦. Furthermore, we
compared the performance of different 𝑓 (𝛥𝜃). All candidate of 𝑓 (𝛥𝜃)
satisfy Property 2 and Property 3 in Section 3.3.2, that is, both 𝑓 (𝛥𝜃)
and its gradient are monotonically increasing with angular error (as
shown in Fig. 10). Among them, 𝑓 (𝛥𝜃) = 𝛥𝜃 − sin𝛥𝜃 achieves AP50∶90
of 54.21% and mAOE of 4.63%, which is the best among compared
functions.

5.2. Comparison with state-of-the-art methods

5.2.1. Results on HRSC2016
The HRSC2016 dataset (Liu et al., 2017) contains a large number

of remote sensing ships with large aspect ratios. We compare the per-
formance of state-of-the-art methods on HRSC2016 dataset. As shown
in Table 9, TIOE-Det achieves the mAP of 90.16%, which is the best
performance among the compared methods. POE strategy helps to ac-
curately predict the orientation of ships with large aspect ratios, while
PHA scores allows for confident selection of high-quality detections.
Some detection results are shown in Fig. 11.

5.2.2. Results on UCAS-AOD and UAV-AOD
UCAS-AOD (Zhu et al., 2015) and UAV-ROD (Zhou et al., 2022) are

aerial image datasets with OBB annotations. We conducted experiments
on the two datasets, and experimental results are shown in Tables 10
and 11. UCAS-AOD (Zhu et al., 2015) contains a large number of
small-scale cars that are difficult to detect. TIOE-Det achieves accurate
car detection with an AP of 88.83%, which is the best among the
compared methods. Noting that the detection performance of airplane
is slightly lower than that of RetinaNet (Lin et al., 2017), we suggest
that airplanes are annotated with square-like boxes, and thus the POE
strategy does not bring a significant performance gain. UAV-ROD (Zhou
et al., 2022) is a recent dataset of drone aerial imagery. AP here denotes
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average precision over different IoU thresholds, from 0.50 to 0.95,
step 0.05. AP50 of our method is slightly inferior to models such as
TS4Net (Zhou et al., 2022). We suggest that our method focuses more
on improving high-precision detection performance. As a result, TIOE-
Det achieves the AP of 77.93% and AP75 of 89.64%, which are the
best performance among compared models. Some detection results on
UCAS-AOD and UAV-ROD are shown in Fig. 12.

5.2.3. Results on DIOR-r
DIOR dataset (Li et al., 2020a) is a large-scale public dataset for

object detection in remote sensing images. DIOR-R shares the same im-
age with the original version DIOR and introduces additional oriented
bounding box annotations. As shown in Table 12, TIOE-Det achieves
the mAP of 61.98%, which outperforms many existing methods. Some
detections results on DIOR-R are shown in Fig. 13.

5.2.4. Results on DOTA
DOTA (Xia et al., 2018) is the most commonly used datasets for

oriented object detection in remote sensing images. We have reported
detection performance of our model on DOTA in Table 13. TIOE-
Det achieves the mAP of 78.69%, which outperforms many recent
state-of-the-art methods such as AProNet (Zheng et al., 2021). Some
detections on DOTA dataset are visualized in Fig. 14. Our model
achieves superior performance on categories with large aspect ratios
and densely arranged objects, such as bridge(BR), small vehicle(SV),
large vehicle(LV). It shows that TIOE-Det achieves accurate orientation
prediction and provides reliable high-precision detections.

5.2.5. Results on FAIR1M
FAIR1M is a recent large-scale dataset for fine-grained object de-

tection in remote sensing imagery. Many classes have high inter-class
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similarity, such as Boeing 737, Boeing 747, Boeing 777. It is a challeng-
ing task to detect objects and identify their categories. For a fair com-
parison, we reproduce some advanced detectors on FAIR1M dataset in
Table 14. Generally, the current two-stage detectors adopt RoI align (He
et al., 2017) to extract discriminative features, which greatly improves
the accuracy of fine-grained object recognition. Therefore, two-stage
detectors in Table 14 (Faster RCNN (Ren et al., 2016), RoI Trans-
former (Ding et al., 2019), Gliding Vertex (Xu et al., 2020)) achieve
better performance than one-stage detectors (such as FCOS (Tian et al.,
2019), CFC-Net (Ming et al., 2022a)). TIOE-Det achieves the mAP of
35.16%, which outperforms the compared one-stage detectors and even
some two-stage detectors in Table 14. After using multi-scale training
and testing, our method achieves the mAP of 43.87%. Visualization of
some detection results is shown in Fig. 15.

5.3. Analysis and discussion

Our TIOE-Det achieves state-of-the-art performance on multiple
datasets. The modules we propose, PHA label, BAL, POE coding, and
ADW strategy achieve stable performance gains. Specifically, it can be
seen from Fig. 8 and Table Table 1 that the PHA label greatly improves
the performance of high-precision object detection. We suggest that
PHA label efficiently selects high-quality predictions, thereby avoiding
the inconsistency between classification scores and localization accu-
racy during inference. BAL alleviates the imbalance problem in PHA
prediction for better performance.

The proposed POE strategy solves the periodicity of angle predic-
tion. However, it introduces the inaccurate angular distance measure-
ment. Therefore, AWD strategy applies AOM and EOM to calculate the
angle deviation during training. As shown in Table 5, the ADW strategy
significantly reduces the angle prediction error, thereby improving the
high-precision detection performance. Also, the flexible POE coding
allows for a trade-off between accuracy and speed of the model as
shown in Tables 6 and 7.

6. Conclusion

High-precision oriented object detection has always been a challeng-
ing task. Current mainstream rotation detectors suffer from unreliable
detection results and inaccurate orientation prediction. In this paper,
we design TIOE-Det for high-precision object detection in remote sens-
ing images. TIOE-Det employs two novel modules: posterior hierarchi-
cal alignment (PHA) branch and progressive direction estimation (POE)
strategy. Specifically, PHA branch predicts PHA score based on local-
ization accuracy for high-quality detection selection. The POE strategy
discretizes the object orientation and adopts interpretable progressive
coding to represent orientation of the target. Furthermore, we designed
a balanced alignment loss and an angular deviation weighting strategy
during loss calculation for two proposed module. TIOE-Det achieves
superior performance on multiple publicly available remote sensing
datasets. Extensive experimental results demonstrate the effectiveness
of our method.
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